de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Sensitivity of tropospheric chemical composition to halogen-radical chemistry using a fully coupled size-resolved multiphase chemistry-global climate system: halogen distributions, aerosol composition, and sensitivity of climate-relevant gases

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons101233

Sander,  R.
Atmospheric Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Long, M. S., Keene, W. C., Easter, R. C., Sander, R., Liu, X., Kerkweg, A., et al. (2014). Sensitivity of tropospheric chemical composition to halogen-radical chemistry using a fully coupled size-resolved multiphase chemistry-global climate system: halogen distributions, aerosol composition, and sensitivity of climate-relevant gases. Atmospheric Chemistry and Physics, 14(7), 3397-3425. doi:10.5194/acp-14-3397-2014.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0024-B1E5-F
Abstract
Observations and model calculations indicate that highly non-linear multiphase atmospheric processes involving inorganic Cl and Br significantly impact tropospheric chemistry and composition, aerosol evolution, and radiative transfer. The sensitivity of global atmospheric chemistry to the production of marine aerosol and the associated activation and cycling of inorganic Cl and Br was investigated using a size-resolved multiphase coupled chemistry-global climate model (National Center for Atmospheric Research's Community Atmosphere Model (CAM) v3.6.33). Simulated results revealed strong meridional and vertical gradients in Cl and Br species. They also point to possible physicochemical mechanisms that may account for several previously unexplained phenomena, including the enrichment of Br- in submicron aerosol and the presence of a BrO maximum in the polar free troposphere. However, simulated total volatile inorganic Br mixing ratios in the troposphere were generally higher than observed, due in part to the overly efficient net production of BrCl. In addition, the emission scheme for marine aerosol and associated Br-, which is the only source for Br in the model, overestimates emission fluxes from the high-latitude Southern Ocean. Br in the stratosphere was lower than observed due to the lack of long-lived precursor organobromine species in the simulation. Comparing simulations using chemical mechanisms with and without reactive Cl and Br species demonstrates a significant temporal and spatial sensitivity of primary atmospheric oxidants (O-3, HOx, NOx), CH4, non-methane hydrocarbons (NMHCs), and dimethyl sulfide (DMS) to halogen cycling. Globally, halogen chemistry had relatively less impact on SO2 and non-sea-salt (nss) SO42- although significant regional differences were evident. Although variable geographically, much of this sensitivity is attributable to either over-vigorous activation of Br (primarily BrCl) via the chemical mechanism or overproduction of sea-salt aerosol simulated under higher-wind regimes. In regions where simulated mixing ratios of reactive Br and Cl fell within observed ranges, though, halogen chemistry drove large changes in oxidant fields and associated chemical processes relative to simulations with no halogens. However, the overall simulated impacts of Br chemistry globally are overestimated and thus caution is warranted in their interpretation.