de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Cloud detection and classification based on MAX-DOAS observations

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons101349

Wagner,  T.
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons100850

Beirle,  S.
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons100912

Dörner,  S.
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons101213

Remmers,  J.
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons101265

Shaiganfar,  R.
Satellite Remote Sensing, Max Planck Institute for Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Wagner, T., Apituley, A., Beirle, S., Dörner, S., Friess, U., Remmers, J., et al. (2014). Cloud detection and classification based on MAX-DOAS observations. Atmospheric Measurement Techniques, 7(5), 1289-1320. doi:10.5194/amt-7-1289-2014.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-B484-2
Zusammenfassung
Multi-axis differential optical absorption spectroscopy (MAX-DOAS) observations of aerosols and trace gases can be strongly influenced by clouds. Thus, it is important to identify clouds and characterise their properties. In this study we investigate the effects of clouds on several quantities which can be derived from MAX-DOAS observations, like radiance, the colour index (radiance ratio at two selected wavelengths), the absorption of the oxygen dimer O-4 and the fraction of inelastically scattered light (Ring effect). To identify clouds, these quantities can be either compared to their corresponding clear-sky reference values, or their dependencies on time or viewing direction can be analysed. From the investigation of the temporal variability the influence of clouds can be identified even for individual measurements. Based on our investigations we developed a cloud classification scheme, which can be applied in a flexible way to MAX-DOAS or zenith DOAS observations: in its simplest version, zenith observations of the colour index are used to identify the presence of clouds (or high aerosol load). In more sophisticated versions, other quantities and viewing directions are also considered, which allows subclassifications like, e.g., thin or thick clouds, or fog. We applied our cloud classification scheme to MAX-DOAS observations during the Cabauw intercomparison campaign of Nitrogen Dioxide measuring instruments (CINDI) campaign in the Netherlands in summer 2009 and found very good agreement with sky images taken from the ground and backscatter profiles from a lidar.