Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Assessment of cloud supersaturation by size-resolved aerosol particle and cloud condensation nuclei (CCN) measurements

MPG-Autoren
/persons/resource/persons127585

Krüger,  M. L.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101066

Klimach,  T.
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons127588

Cheng,  Y. F.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101295

Su,  H.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101255

Schneider,  J.
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons100833

Andreae,  M. O.
Biogeochemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101189

Pöschl,  U.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101223

Rose,  D.
Multiphase Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Krüger, M. L., Mertes, S., Klimach, T., Cheng, Y. F., Su, H., Schneider, J., et al. (2014). Assessment of cloud supersaturation by size-resolved aerosol particle and cloud condensation nuclei (CCN) measurements. Atmospheric Measurement Techniques, 7(8), 2615-2629. doi:10.5194/amt-7-2615-2014.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0024-B1B2-1
Zusammenfassung
In this study we show how size-resolved measurements of aerosol particles and cloud condensation nuclei (CCN) can be used to characterize the supersaturation of water vapor in a cloud. The method was developed and applied during the ACRIDICON-Zugspitze campaign (17 September to 4 October 2012) at the high-Alpine research station Schneefernerhaus (German Alps, 2650ma.s.l.). Number size distributions of total and interstitial aerosol particles were measured with a scanning mobility particle sizer (SMPS), and size-resolved CCN efficiency spectra were recorded with a CCN counter system operated at different supersaturation levels. During the evolution of a cloud, aerosol particles are exposed to different supersaturation levels. We outline and compare different estimates for the lower and upper bounds (Slow, Shigh) and the average value (S-avg) of peak supersaturation encountered by the particles in the cloud. A major advantage of the derivation of Slow and S-avg from size-resolved CCN efficiency spectra is that it does not require the specific knowledge or assumptions about aerosol hygroscopicity that are needed to derive estimates of S-low, S-high, and S-avg from aerosol size distribution data. For the investigated cloud event, we derived S-low approximate to 0.07-0.25 %, S-high approximate to 0.86-1.31% and S-avg approximate to 0.42-0.68 %.