English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Stardust Interstellar Preliminary Examination XI: Identification and elemental analysis of impact craters on Al foils from the Stardust Interstellar Dust Collector

MPS-Authors
/persons/resource/persons101012

Hoppe,  Peter
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101020

Huth,  Joachim
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

/persons/resource/persons101103

Leitner,  Jan
Particle Chemistry, Max Planck Institute for Chemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Stroud, R. M., Allen, C., Ansari, A., Anderson, D., Bajt, S., Bassim, N., et al. (2014). Stardust Interstellar Preliminary Examination XI: Identification and elemental analysis of impact craters on Al foils from the Stardust Interstellar Dust Collector. Meteoritics & Planetary Science, 49(9), 1698-1719. doi:10.1111/maps.12136.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-B6A3-1
Abstract
The Stardust Interstellar Preliminary Examination team analyzed thirteen Al foils from the NASA Stardust interstellar collector tray in order to locate candidate interstellar dust (ISD) grain impacts. Scanning electron microscope (SEM) images reveal that the foils possess abundant impact crater and crater-like features. Elemental analyses of the crater features, with Auger electron spectroscopy, SEM-based energy dispersive X-ray (EDX) spectroscopy, and scanning transmission electron microscope-based EDX spectroscopy, demonstrate that the majority are either the result of impacting debris fragments from the spacecraft solar panels, or intrinsic defects in the foil. The elemental analyses also reveal that four craters contain residues of a definite extraterrestrial origin, either as interplanetary dust particles or ISD particles. These four craters are designated level 2 interstellar candidates, based on the crater shapes indicative of hypervelocity impacts and the residue compositions inconsistent with spacecraft debris.