English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture

MPS-Authors
/persons/resource/persons98198

Srinivas,  Girish
Guest Group Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56786

Künzel,  Sven
Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons82472

Linnenbrink,  Miriam
Department Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

/persons/resource/persons56580

Baines,  John F.
Guest Group Evolutionary Genomics, Max Planck Institute for Evolutionary Biology, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

Yun_et_al_2014.pdf
(Publisher version), 2MB

Supplementary Material (public)
There is no public supplementary material available
Citation

Yun, Y., Srinivas, G., Künzel, S., Linnenbrink, M., Alnahas, S., Bruce, K. D., et al. (2014). Environmentally determined differences in the murine lung microbiota and their relation to alveolar architecture. PLoS One, 9(12): e113466. doi:DOI:10.1371/journal.pone.0113466.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-9106-E
Abstract
Commensal bacteria control the micro-ecology of metazoan epithelial surfaces with pivotal effect on tissue homeostasis and host defense. In contrast to the upper respiratory tract, the lower respiratory tract of healthy individuals has largely been considered free of microorganisms. To understand airway micro-ecology we studied microbiota of sterilely excised lungs from mice of different origin including outbred wild mice caught in the natural environment or kept under non-specific-pathogen-free (SPF) conditions as well as inbred mice maintained in non-SPF, SPF or germ-free (GF) facilities. High-throughput pyrosequencing of reverse transcribed 16S rRNA revealed metabolically active murine lung microbiota in all but GF mice. The overall composition across samples was similar at the phylum and family level. However, species richness was significantly different between lung microbiota from SPF and non-SPF mice. Non-cultivatable Betaproteobacteria such as Ralstonia spp. made up the major constituents and were also confirmed by 16S rRNA gene cloning analysis. Additionally, Pasteurellaceae, Enterobacteria and Firmicutes were isolated from lungs of non-SPF mice. Bacterial communities were detectable by fluorescent in situ hybridization (FISH) at alveolar epithelia in the absence of inflammation. Notably, higher bacterial abundance in non-SPF mice correlated with more and smaller size alveolae, which was corroborated by transplanting Lactobacillus spp. lung isolates into GF mice. Our data indicate a common microbial composition of murine lungs, which is diversified through different environmental conditions and affects lung architecture. Identification of the microbiota of murine lungs will pave the path to study their influence on pulmonary immunity to infection and allergens using mouse models.