English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials

MPS-Authors
/persons/resource/persons58985

Schüth,  Ferdi
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Suga, M., Asahina, S., Sakuda, Y., Kazumori, H., Nishiyama, H., Nokuo, T., et al. (2014). Recent progress in scanning electron microscopy for the characterization of fine structural details of nano materials. Progress in Solid State Chemistry, 42(1-2), 1-21. doi:10.1016/j.progsolidstchem.2014.02.001.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-8693-7
Abstract
Research concerning nano-materials (metal-organic frameworks (MOFs), zeolites, mesoporous silicas, etc.) and the nano-scale, including potential barriers for the particulates to diffusion to/from is of increasing importance to the understanding of the catalytic utility. of porous materials when combined with any potential super structures (such as hierarchically porous materials). However, it is difficult to characterize the structure of for example MOFs via X-ray powder diffraction because of the serious overlapping of reflections caused by their large unit cells, and it is also difficult to directly observe the opening of surface pores using ordinary methods. Electron-microscopic methods including high-resolution scanning electron microscopy (HRSEM) have therefore become imperative for the above challenges. Here, we present the theory and practical application of recent advances such as through-the-lens detection systems, which permit a reduced landing energy and the selection of high-resolution, topographically specific emitted electrons, even from electrically insulating nano-materials. (c) 2014 Elsevier Ltd. All rights reserved.