Hilfe Wegweiser Impressum Kontakt Einloggen





Towards a Visual Turing Challenge


Malinowski,  Mateusz
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

Fritz,  Mario
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

Externe Ressourcen

(beliebiger Volltext)

Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar

Malinowski, M., & Fritz, M. (2014). Towards a Visual Turing Challenge. In NIPS 2014 Workshop on Learning Semantics.

As language and visual understanding by machines progresses rapidly, we are observing an increasing interest in holistic architectures that tightly interlink both modalities in a joint learning and inference process. This trend has allowed the community to progress towards more challenging and open tasks and refueled the hope at achieving the old AI dream of building machines that could pass a turing test in open domains. In order to steadily make progress towards this goal, we realize that quantifying performance becomes increasingly difficult. Therefore we ask how we can precisely define such challenges and how we can evaluate different algorithms on this open tasks? In this paper, we summarize and discuss such challenges as well as try to give answers where appropriate options are available in the literature. We exemplify some of the solutions on a recently presented dataset of question-answering task based on real-world indoor images that establishes a visual turing challenge. Finally, we argue despite the success of unique ground-truth annotation, we likely have to step away from carefully curated dataset and rather rely on ’}social consensus{’ as the main driving force to create suitable benchmarks. Providing coverage in this inherently ambiguous output space is an emerging challenge that we face in order to make quantifiable progress in this area.