English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structural basis for membrane targeting of the BBSome by ARL6.

MPS-Authors
/persons/resource/persons138063

Mourao,  Andre
Lorentzen, Esben / Intraflagellar Transport, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78333

Lorentzen,  Esben
Lorentzen, Esben / Intraflagellar Transport, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Mourao, A., Nager, A. R., Nachury, M. V., & Lorentzen, E. (2014). Structural basis for membrane targeting of the BBSome by ARL6. Nature structural & molecular biology, 21(12), 1035-1041. doi:10.1038/nsmb.2920.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0024-61C7-0
Abstract
The BBSome is a coat-like ciliary trafficking complex composed of proteins mutated in Bardet-Biedl syndrome (BBS). A critical step in BBSome-mediated sorting is recruitment of the BBSome to membranes by the GTP-bound Arf-like GTPase ARL6. We have determined crystal structures of Chlamydomonas reinhardtii ARL6-GDP, ARL6-GTP and the ARL6-GTP-BBS1 complex. The structures demonstrate how ARL6-GTP binds the BBS1 beta-propeller at blades 1 and 7 and explain why GTP- but not GDP-bound ARL6 can recruit the BBSome to membranes. Single point mutations in the ARL6-GTP-BBS1 interface abolish the interaction of ARL6 with the BBSome and prevent the import of BBSomes into cilia. Furthermore, we show that BBS1 with the M390R mutation, responsible for 30% of all reported BBS disease cases, fails to interact with ARL6-GTP, thus providing a molecular rationale for patient pathologies.