de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Is Motion-capture-based Biomechanical Simulation Valid for HCI Studies? Study and Implications

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons123494

Bachynskyi,  Myroslav
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons123219

Oulasvirta,  Antti
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons79412

Palmas,  Gregorio
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons123492

Weinkauf,  Tino
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bachynskyi, M., Oulasvirta, A., Palmas, G., & Weinkauf, T. (2014). Is Motion-capture-based Biomechanical Simulation Valid for HCI Studies? Study and Implications. In CHI 2014 (pp. 3215-3224). New York, NY: ACM. doi:10.1145/2556288.2557027.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-4D2D-8
Zusammenfassung
Motion-capture-based biomechanical simulation is a non-invasive analysis method that yields a rich description of posture, joint, and muscle activity in human movement. The method is presently gaining ground in sports, medicine, and industrial ergonomics, but it also bears great potential for studies in HCI where the physical ergonomics of a design is important. To make the method more broadly accessible, we study its predictive validity for movements and users typical to studies in HCI. We discuss the sources of error in biomechanical simulation and present results from two validation studies conducted with a state-of-the-art system. Study I tested aimed movements ranging from multitouch gestures to dancing, finding out that the critical limiting factor is the size of movement. Study II compared muscle activation predictions to surface-EMG recordings in a 3D pointing task. The data shows medium-to-high validity that is, however, constrained by some characteristics of the movement and the user. We draw concrete recommendations to practitioners and discuss challenges to developing the method further.