de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Paper

Point Line Cover: The Easy Kernel is Essentially Tight

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44840

Kratsch,  Stefan
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons71823

Philip,  Geevarghese
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45269

Ray,  Saurabh
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)

arXiv:1307.2521.pdf
(Preprint), 783KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Kratsch, S., Philip, G., & Ray, S. (2013). Point Line Cover: The Easy Kernel is Essentially Tight. Retrieved from http://arxiv.org/abs/1307.2521.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0024-453C-A
Abstract
The input to the NP-hard Point Line Cover problem (PLC) consists of a set $P$ of $n$ points on the plane and a positive integer $k$, and the question is whether there exists a set of at most $k$ lines which pass through all points in $P$. A simple polynomial-time reduction reduces any input to one with at most $k^2$ points. We show that this is essentially tight under standard assumptions. More precisely, unless the polynomial hierarchy collapses to its third level, there is no polynomial-time algorithm that reduces every instance $(P,k)$ of PLC to an equivalent instance with $O(k^{2-\epsilon})$ points, for any $\epsilon>0$. This answers, in the negative, an open problem posed by Lokshtanov (PhD Thesis, 2009). Our proof uses the machinery for deriving lower bounds on the size of kernels developed by Dell and van Melkebeek (STOC 2010). It has two main ingredients: We first show, by reduction from Vertex Cover, that PLC---conditionally---has no kernel of total size $O(k^{2-\epsilon})$ bits. This does not directly imply the claimed lower bound on the number of points, since the best known polynomial-time encoding of a PLC instance with $n$ points requires $\omega(n^{2})$ bits. To get around this we build on work of Goodman et al. (STOC 1989) and devise an oracle communication protocol of cost $O(n\log n)$ for PLC; its main building block is a bound of $O(n^{O(n)})$ for the order types of $n$ points that are not necessarily in general position, and an explicit algorithm that enumerates all possible order types of n points. This protocol and the lower bound on total size together yield the stated lower bound on the number of points. While a number of essentially tight polynomial lower bounds on total sizes of kernels are known, our result is---to the best of our knowledge---the first to show a nontrivial lower bound for structural/secondary parameters.