de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Autofocused 3D Classification of Cryoelectron Subtomograms

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons77858

Chen,  Yuxiang
Förster, Friedrich / Modeling of Protein Complexes, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons78500

Pfeffer,  Stefan
Förster, Friedrich / Modeling of Protein Complexes, Max Planck Institute of Biochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons77965

Förster,  Friedrich
Förster, Friedrich / Modeling of Protein Complexes, Max Planck Institute of Biochemistry, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Chen, Y., Pfeffer, S., Jesus Fernandez, J., Sorzano, C. O. S., & Förster, F. (2014). Autofocused 3D Classification of Cryoelectron Subtomograms. STRUCTURE, 22(10), 1528-1537. doi:10.1016/j.str.2014.08.007.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-456F-9
Zusammenfassung
Classification of subtomograms obtained by cryoelectron tomography (cryo-ET) is a powerful approach to study the conformational landscapes of macromolecular complexes in situ. Major challenges in subtomogram classification are the low signal-to-noise ratio (SNR) of cryo-tomograms, their incomplete angular sampling, the unknown number of classes and the typically unbalanced abundances of structurally distinct complexes. Here, we propose a clustering algorithm named AC3D that is based on a similarity measure, which automatically focuses on the areas of major structural discrepancy between respective subtomogram class averages. Furthermore, we incorporate a spherical-harmonics-based fast subtomogram alignment algorithm, which provides a significant speedup. Assessment of our approach on simulated data sets indicates substantially increased classification accuracy of the presented method compared to two state-of-the-art approaches. Application to experimental subtomograms depicting endoplasmic-reticulum-associated ribosomal particles shows that AC3D is well suited to deconvolute the compositional heterogeneity of macromolecular complexes in situ.