de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Evolution of mesoporous materials during the calcination process: structural and chemical behavior

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons58699

Kleitz,  F.
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons58966

Schmidt,  W.
Research Group Schmidt, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons58985

Schüth,  F.
Research Department Schüth, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kleitz, F., Schmidt, W., & Schüth, F. (2001). Evolution of mesoporous materials during the calcination process: structural and chemical behavior. Microporous and Mesoporous Materials, 44-45, 95-109. doi:10.1016/S1387-1811(01)00173-1.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0024-05FD-B
Zusammenfassung
We describe herein the study of the temporal evolution of hexagonal mesophases of silica, titania and zirconia as a function of temperature. Detailed in situ X-ray diffraction (XRD) studies with a high temperature XRD chamber system have been conducted in conjunction with thermogravimetric–differential thermal analysis coupled with mass spectrometry (TG–DTA/MS) to better understand the processes related with template removal from MCM-41 type mesophases. The thermal behavior of the cationic surfactants in the mesostructured systems has been analyzed, and the processes involved have been elucidated. In the case of Si-MCM-41, an initial change occurs up to 250°C with an increase in intensity of all reflections, with the (1 1 0) and (2 0 0) reflections increasing later and at a higher rate than the (1 0 0) reflection. After 300°C, changes are less pronounced and the intensities remain unchanged while the sample is kept at 550°C. The TG–DTA/MS data show that the decomposition mechanism in air involves three steps. An initial endothermic step is assigned to Hofmann elimination of trimethylamine, leading to a hydrocarbon chain. The second step is exothermic and results from a carbon chain fragmentation. Finally, oxidation occurring at 320°C converts the remaining organic components to carbon dioxide. Template removal appears to be completely different for the transition metal based materials: a single step complete oxidation of the surfactant is observed around 300°C in TG–DTA/MS. This is accompanied with the drastic decrease in d-spacing and initial sharp increase in reflection intensity in the XRD pattern, which generally leads to the loss of the well ordered hexagonal structure.