de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Small mass plunging into a Kerr black hole: Anatomy of the inspiral-merger-ringdown waveforms

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons127862

Buonanno,  A.
Astrophysical and Cosmological Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1404.1819.pdf
(Preprint), 3MB

PhysRevD.90_084025.pdf
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Taracchini, A., Buonanno, A., Khanna, G., & Hughes, S. A. (2014). Small mass plunging into a Kerr black hole: Anatomy of the inspiral-merger-ringdown waveforms. Physical Review D, 90: 084025. doi:10.1103/PhysRevD.90.084025.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0023-F996-5
Zusammenfassung
We numerically solve the Teukolsky equation in the time domain to obtain the gravitational-wave emission of a small mass inspiraling and plunging into the equatorial plane of a Kerr black hole. We account for the dissipation of orbital energy using the Teukolsky frequency-domain gravitational-wave fluxes for circular, equatorial orbits, down to the light-ring. We consider Kerr spins $-0.99 \leq q \leq 0.99$, and compute the inspiral-merger-ringdown (2,2), (2,1), (3,3), (3,2), (4,4), and (5,5) modes. We study the large-spin regime, and find a great simplicity in the merger waveforms, thanks to the extremely circular character of the plunging orbits. We also quantitatively examine the mixing of quasinormal modes during the ringdown, which induces complicated amplitude and frequency modulations in the waveforms. Finally, we explain how the study of small mass-ratio black-hole binaries helps extending effective-one-body models for comparable-mass, spinning black-hole binaries to any mass ratio and spin magnitude.