English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Autophagic Clearance of PolyQ Proteins Mediated by Ubiquitin-Atg8 Adaptors of the Conserved CUET Protein Family

MPS-Authors
/persons/resource/persons134776

Lu,  Kefeng
Jentsch, Stefan / Molecular Cell Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons79153

Psakhye,  Ivan
Jentsch, Stefan / Molecular Cell Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78165

Jentsch,  Stefan
Jentsch, Stefan / Molecular Cell Biology, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Lu, K., Psakhye, I., & Jentsch, S. (2014). Autophagic Clearance of PolyQ Proteins Mediated by Ubiquitin-Atg8 Adaptors of the Conserved CUET Protein Family. CELL, 158(3), 549-563. doi:10.1016/j.cell.2014.05.048.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0023-DB03-1
Abstract
Selective ubiquitin-dependent autophagy plays a pivotal role in the elimination of protein aggregates, assemblies, or organelles and counteracts the cytotoxicity of proteins linked to neurodegenerative diseases. Following substrate ubiquitylation, the cargo is delivered to autophagosomes involving adaptors like human p62 that bind ubiquitin and the autophagosomal ubiquitin-like protein Atg8/LC3; however, whether similar pathways exist in lower eukaryotes remained unclear. Here, we identify by a screen in yeast a new class of ubiquitin-Atg8 adaptors termed CUET proteins, comprising the ubiquitin-binding CUE-domain protein Cue5 from yeast and its human homolog Tollip. Cue5 collaborates with Rsp5 ubiquitin ligase, and the corresponding yeast mutants accumulate aggregation-prone proteins and are vulnerable to polyQ protein expression. Similarly, Tollip depletion causes cytotoxicity toward polyQ proteins, whereas Tollip overexpression clears human cells from Huntington's disease-linked polyQ proteins by autophagy. We thus propose that CUET proteins play a critical and ancient role in autophagic clearance of cytotoxic protein aggregates.