Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Two-dimensional spectral interpretation of time-dependent absorption near laser-coupled resonances

MPG-Autoren
/persons/resource/persons73515

Blättermann,  Alexander
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons37850

Ott,  Christian
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons37846

Kaldun,  Andreas
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons37854

Ding,  Thomas
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

/persons/resource/persons30892

Pfeifer,  Thomas
Division Prof. Dr. Thomas Pfeifer, MPI for Nuclear Physics, Max Planck Society;

Externe Ressourcen
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

1403.2609v1
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Blättermann, A., Ott, C., Kaldun, A., Ding, T., & Pfeifer, T. (2014). Two-dimensional spectral interpretation of time-dependent absorption near laser-coupled resonances. Journal of Physics B, 47(12): 124008. doi:10.1088/0953-4075/47/12/124008.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-001A-1E4E-2
Zusammenfassung
We demonstrate a two-dimensional time-domain spectroscopy method to extract amplitude and phase modifications of excited atomic states caused by the interaction with ultrashort laser pulses. The technique is based on Fourier analysis of the absorption spectrum of perturbed polarization decay. An analytical description of the method reveals how amplitude and phase information can be directly obtained from measurements. We apply the method experimentally to the helium atom, which is excited by attosecond-pulsed extreme ultraviolet light, to characterize laser-induced couplings of doubly excited states.