de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

RGB-D based Haptic Teleoperation of UAVs with Onboard Sensors: Development and Preliminary Results

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons83915

Franchi,  A
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons133440

Stegagno,  P
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons133491

Basile,  M
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons83839

Bülthoff,  HH
Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society;
Max Planck Institute for Biological Cybernetics, Max Planck Society;

Externe Ressourcen
Volltexte (frei zugänglich)

IROS-2013-Workshop-Franchi.pdf
(beliebiger Volltext), 734KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Franchi, A., Stegagno, P., Basile, M., & Bülthoff, H. (2013). RGB-D based Haptic Teleoperation of UAVs with Onboard Sensors: Development and Preliminary Results. In IEEE/RSJ IROS'13 International Workshop on Vision-based Closed-Loop Control and Navigation of Micro Helicopters in GPS-denied Environments (pp. 1-4).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-001A-148E-D
Zusammenfassung
This talk will present the design of a platform for autonomous navigation of a quadrotor UAV based on RGB-D technology. The proposed platform can safely navigate in an unknown environment while self-stabilization is done relying only on its own sensor perception. An estimation system based IMU and RGB-D integration computes the velocity of the quadrotor in its body frame. Experimental tests conducted as teleoperation experiments show the effectiveness of our approach in an unstructured environment.