Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Determination of the Earth's pole tide Love number k2 from observations of polar motion using an adaptive Kalman filter approach

MPG-Autoren

Kirschner ,  S.
Department of Developmental and Comparative Psychology, Max Planck Institute for Evolutionary Anthropology, Max Planck Society;

/persons/resource/persons127291

Neubersch,  D.
IMPRS on Earth System Modelling, MPI for Meteorology, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

jgrb17288.pdf
(Verlagsversion), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Seitz, F., Kirschner, S., & Neubersch, D. (2012). Determination of the Earth's pole tide Love number k2 from observations of polar motion using an adaptive Kalman filter approach. Journal of Geophysical Research-Solid Earth, 117: B09403. doi:10.1029/2012JB009296.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0019-F7F9-C
Zusammenfassung
The geophysical interpretation of observed time series of Earth rotation parameters (ERP) is commonly based on numerical models that describe and balance variations of angular momentum in various subsystems of the Earth. Naturally, models are dependent on geometrical, rheological and physical parameters. Many of these are weakly determined from other models or observations. In our study we present an adaptive Kalman filter approach for the improvement of parameters of the dynamic Earth system model DyMEG which acts as a simulator of ERP. In particular we focus on the improvement of the pole tide Love number k(2). In the frame of a sensitivity analysis k(2) has been identified as one of the most crucial parameters of DyMEG since it directly influences the modeled Chandler oscillation. At the same time k(2) is one of the most uncertain parameters in the model. Our simulations with DyMEG cover a period of 60 years after which a steady state of k(2) is reached. The estimate for k(2), accounting for the anelastic response of the Earth's mantle and the ocean, is 0.3531 + 0.0030i. We demonstrate that the application of the improved parameter k(2) in DyMEG leads to significantly better results for polar motion than the original value taken from the Conventions of the International Earth Rotation and Reference Systems Service (IERS).