de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Generating Dual-Bounded Hypergraphs

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44374

Elbassioni,  Khaled M.
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Boros, E., Elbassioni, K. M., Khachiyan, L., & Gurvich, V. (2002). Generating Dual-Bounded Hypergraphs. Optimization Methods and Software, 17(5), 33.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0019-ED7E-2
Zusammenfassung
This paper surveys some recent results on the generation of implicitly given hypergraphs and their applications in Boolean and integer programming, data mining, reliability theory, and combinatorics. Given a monotone property π over the subsets of a finite set V, we consider the problem of incrementally generating the family \cF_π} of all minimal subsets satisfying property π, when π is given by a polynomial-time satisfiability oracle. For a number of interesting monotone properties, the family \cF_{π} turns out to be {\em uniformly dual-bounded}, allowing for the incrementally efficient enumeration of the members of \cF_{π. Important applications include the efficient generation of minimal infrequent sets of a database (data mining), minimal connectivity ensuring collections of subgraphs from a given list (reliability theory), minimal feasible solutions to a system of monotone inequalities in integer variables (integer programming), minimal spanning collections of subspaces from a given list (linear algebra) and maximal independent sets in the intersection of matroids (combinatorial optimization). In contrast to these results, the analogous problem of generating the family of all maximal subsets not having property π is NP-hard for almost all applications mentioned above.