English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases

MPS-Authors
/persons/resource/persons58410

Barbatti,  Mario Cesar
Research Group Barbatti, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Institute for Theoretical Chemistry, University of Vienna;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Barbatti, M. C., Aquino, A. J. A., Szymczak, J., Nachtigallova, D., Hobza, P., & Lischka, H. (2010). Relaxation mechanisms of UV-photoexcited DNA and RNA nucleobases. Proceedings of the National Academy of Sciences of the United States of America, 107(50), 21453-21458. doi:10.1073/pnas.1014982107.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0019-EBED-7
Abstract
A comprehensive effort in photodynamical ab initio simulations of the ultrafast deactivation pathways for all five nucleobases adenine, guanine, cytosine, thymine, and uracil is reported. These simulations are based on a complete nonadiabatic surface-hopping approach using extended multiconfigurational wave functions. Even though all five nucleobases share the basic internal conversion mechanisms, the calculations show a distinct grouping into purine and pyrimidine bases as concerns the complexity of the photodynamics. The purine bases adenine and guanine represent the most simple photodeactivation mechanism with the dynamics leading along a diabatic ππ* path directly and without barrier to the conical intersection seam with the ground state. In the case of the pyrimidine bases, the dynamics starts off in much flatter regions of the ππ* energy surface due to coupling of several states. This fact prohibits a clear formation of a single reaction path. Thus, the photodynamics of the pyrimidine bases is much richer and includes also nπ* states with varying importance, depending on the actual nucleobase considered. Trapping in local minima may occur and, therefore, the deactivation time to the ground state is also much longer in these cases. Implications of these findings are discussed (i) for identifying structural possibilities where singlet/triplet transitions can occur because of sufficient retention time during the singlet dynamics and (ii) concerning the flexibility of finding other deactivation pathways in substituted pyrimidines serving as candidates for alternative nucleobases.