Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Ultrafast Exciton Formation at the ZnO(101¯0) Surface

MPG-Autoren
/persons/resource/persons21453

Deinert,  Jan-Christoph
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22225

Wegkamp,  Daniel
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21877

Meyer,  Michael
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons81302

Richter,  Clemens
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22250

Wolf,  Martin
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons22128

Stähler,  Julia
Physical Chemistry, Fritz Haber Institute, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)

PhysRevLett.113.057602.pdf
(Verlagsversion), 599KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Deinert, J.-C., Wegkamp, D., Meyer, M., Richter, C., Wolf, M., & Stähler, J. (2014). Ultrafast Exciton Formation at the ZnO(101¯0) Surface. Physical Review Letters, 113(5): 057602. doi:10.1103/PhysRevLett.113.057602.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-001A-0A68-0
Zusammenfassung
We study the ultrafast quasiparticle dynamics in and below the ZnO conduction band using femtosecond time-resolved two-photon photoelectron spectroscopy. Above band gap excitation causes hot electron relaxation by electron-phonon scattering down to the Fermi level EF followed by ultrafast (200 fs) formation of a surface exciton (SX). Transient screening of the Coulomb interaction reduces the SX formation probability at high excitation densities near the Mott limit. Located just below the surface, the SX are stable with regard to hydrogen-induced work function modifications and thus the ideal prerequisite for resonant energy transfer applications.