de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Combining Information Extraction and Human Computing for Crowdsourced Knowledge Acquisition

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44821

Kondreddi,  Sarath Kumar
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45720

Weikum,  Gerhard
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Kondreddi, S. K., Triantafillou, P., & Weikum, G. (2014). Combining Information Extraction and Human Computing for Crowdsourced Knowledge Acquisition. In 30th IEEE International Conference on Data Engineering (pp. 988-999). Piscataway, NJ: IEEE. doi:10.1109/ICDE.2014.6816717.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0023-C15D-6
Zusammenfassung
Automatic information extraction (IE) enables the construction of very large knowledge bases (KBs), with relational facts on millions of entities from text corpora and Web sources. However, such KBs contain errors and they are far from being complete. This motivates the need for exploiting human intelligence and knowledge using crowd-based human computing (HC) for assessing the validity of facts and for gathering additional knowledge. This paper presents a novel system architecture, called Higgins, which shows how to effectively integrate an IE engine and a HC engine. Higgins generates game questions where players choose or fill in missing relations for subject-relation-object triples. For generating multiple-choice answer candidates, we have constructed a large dictionary of entity names and relational phrases, and have developed specifically designed statistical language models for phrase relatedness. To this end, we combine semantic resources like WordNet, ConceptNet, and others with statistics derived from a large Web corpus. We demonstrate the effectiveness of Higgins for knowledge acquisition by crowdsourced gathering of relationships between characters in narrative descriptions of movies and books.