de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons129628

Lange,  Markus
Molecular Biogeochemistry Group, Dr. G. Gleixner, Department Biogeochemical Processes, Prof. S. E. Trumbore, Max Planck Institute for Biogeochemistry, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons62409

Hessenmöller,  Dominik
Emeritus Group, Prof. E.-D. Schulze, Max Planck Institute for Biogeochemistry, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Lange, M., Türke, M., Pašalić, E., Boch, S., Hessenmöller, D., Müller, J., et al. (2014). Effects of forest management on ground-dwelling beetles (Coleoptera; Carabidae, Staphylinidae) in Central Europe are mainly mediated by changes in forest structure. Forest Ecology and Management, 329, 166-176. doi:10.1016/j.foreco.2014.06.012.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0019-DC88-4
Abstract
Forest management is known to influence species diversity of various taxa but inconsistent or even contrasting effects are reported for arthropods. Regional differences in management as well as differences in regional species pools might be responsible for these inconsistencies, but, inter-regional replicated studies that account for regional variability are rare. We investigated the effect of forest type on the abundance, diversity, community structure and composition of two important ground-dwelling beetle families, Carabidae and Staphylinidae, in 149 forest stands distributed over three regions in Germany. In particular we focused on recent forestry history, stand age and dominant tree species, in addition to a number of environmental descriptors. Overall management effects on beetle communities were small and mainly mediated by structural habitat parameters such as the cover of forest canopy or the plant diversity on forest stands. The general response of both beetle taxa to forest management was similar in all regions: abundance and species richness of beetles was higher in older than in younger stands and species richness was lower in unmanaged than in managed stands. The abundance ratio of forest species-to-open habitat species differed between regions, but generally increased from young to old stands, from coniferous to deciduous stands and from managed to unmanaged stands. The response of both beetle families to dominant tree species was variable among regions and staphylinid richness varied in the response to recent forestry history. Our results suggest that current forest management practices change the composition of ground-dwelling beetle communities mainly by favoring generalists and open habitat species. To protect important forest beetle communities and thus the ecosystem functions and services provided by them, we suggest to shelter remaining ancient forests and to develop near-to-nature management strategies by prolonging rotation periods and increasing structural diversity of managed forests. Possible geographic variations in the response of beetle communities need to be considered in conservation-orientated forest management strategies.