de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

Learning Tuple Probabilities in Probabilistic Databases

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44360

Dylla,  Maximilian
Databases and Information Systems, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45609

Theobald,  Martin
Databases and Information Systems, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

MPI-I-2014-5-001.pdf
(beliebiger Volltext), 740KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Dylla, M., & Theobald, M.(2014). Learning Tuple Probabilities in Probabilistic Databases (MPI-I-2014-5-001). Saarbrücken: Max-Planck-Institut für Informatik.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0019-8492-6
Zusammenfassung
Learning the parameters of complex probabilistic-relational models from labeled training data is a standard technique in machine learning, which has been intensively studied in the subfield of Statistical Relational Learning (SRL), but---so far---this is still an under-investigated topic in the context of Probabilistic Databases (PDBs). In this paper, we focus on learning the probability values of base tuples in a PDB from query answers, the latter of which are represented as labeled lineage formulas. Specifically, we consider labels in the form of pairs, each consisting of a Boolean lineage formula and a marginal probability that comes attached to the corresponding query answer. The resulting learning problem can be viewed as the inverse problem to confidence computations in PDBs: given a set of labeled query answers, learn the probability values of the base tuples, such that the marginal probabilities of the query answers again yield in the assigned probability labels. We analyze the learning problem from a theoretical perspective, devise two optimization-based objectives, and provide an efficient algorithm (based on Stochastic Gradient Descent) for solving these objectives. Finally, we conclude this work by an experimental evaluation on three real-world and one synthetic dataset, while competing with various techniques from SRL, reasoning in information extraction, and optimization.