de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Unsupervised feature learning for visual sign language identification

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons4454

Gebre,  Binyam Gebrekidan
The Language Archive, MPI for Psycholinguistics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons216

Wittenburg,  Peter
The Language Archive, MPI for Psycholinguistics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons39383

Drude,  Sebastian
The Language Archive, MPI for Psycholinguistics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

Gebre_etal_2014.pdf
(Verlagsversion), 5MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Gebre, B. G., Crasborn, O., Wittenburg, P., Drude, S., & Heskes, T. (2014). Unsupervised feature learning for visual sign language identification. In Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics: Vol 2 (pp. 370-376). Redhook, NY: Curran Proceedings.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0018-FED0-E
Zusammenfassung
Prior research on language identification focused primarily on text and speech. In this paper, we focus on the visual modality and present a method for identifying sign languages solely from short video samples. The method is trained on unlabelled video data (unsupervised feature learning) and using these features, it is trained to discriminate between six sign languages (supervised learning). We ran experiments on video samples involving 30 signers (running for a total of 6 hours). Using leave-one-signer-out cross-validation, our evaluation on short video samples shows an average best accuracy of 84%. Given that sign languages are under-resourced, unsupervised feature learning techniques are the right tools and our results indicate that this is realistic for sign language identification.