de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Structural determinants of ion flow through recombinant glutamate receptor channels

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons92382

Burnashev,  Nail
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons94415

Monyer,  Hannah
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons95292

Seeburg,  Peter H.
Department of Molecular Neurobiology, Max Planck Institute for Medical Research, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons95089

Sakmann,  Bert
Department of Cell Physiology, Max Planck Institute for Medical Research, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Verdoorn, T. A., Burnashev, N., Monyer, H., Seeburg, P. H., & Sakmann, B. (1991). Structural determinants of ion flow through recombinant glutamate receptor channels. Science, 252(5013), 1715-1718. doi:10.1126/science.1710829.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0019-ACBA-0
Abstract
Functional glutamate receptor (GluRs) were transiently expressed in cultured mammalian cells from cloned complementary DNAs encoding GluR-A, -B, -C, or -D polypeptides. The steady-state current-voltage (I-V) relations of glutamate- and kainate-induced currents through homomeric channels fell into two classes: channels composed of either the GluR-A, -C, and -D subunits showed doubly rectifying I-V curves, and channels composed of the GluR-B subunits displayed simple outward rectification. The presence of GluR-B subunits in heteromeric GluRs determined the I-V behavior of the resulting channels. Site-directed mutagenesis identified a single amino acid difference (glutamine to arginine) in the putative transmembrane segment TM2 responsible for subunit-specific I-V relationships. The properties of heteromeric wild-type and mutant GluRs revealed that the dominance of GluR-B is due to the arginine residue in the TM2 region.