English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Current methods for inducing pluripotency in somatic cells

MPS-Authors
/persons/resource/persons50433

Mlody,  B.
Molecular Embryology and Aging (James Adjaye), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

/persons/resource/persons50054

Adjaye,  J.
Molecular Embryology and Aging (James Adjaye), Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Tavernier, G., Mlody, B., Demeester, J., Adjaye, J., & De Smedt, S. C. (2013). Current methods for inducing pluripotency in somatic cells. Advanced Materials, 25(20), 2765-71. doi:10.1002/adma.201204874.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0018-F7AE-9
Abstract
The groundbreaking discovery of reprogramming fibroblasts towards pluripotency merely by introducing four transcription factors (OCT4, SOX2, KLF4 and c-MYC) by means of retroviral transduction has created a promising revolution in the field of regenerative medicine. These so-called induced pluripotent stem cells (iPSCs) can provide a cell source for disease-modelling, drug-screening platforms, and transplantation strategies to treat incurable degenerative diseases, while circumventing the ethical issues and immune rejections associated with the use of non-autologous embryonic stem cells. The risk of insertional mutagenesis, caused both by the viral and transgene nature of the technique has proven to be the major limitation for iPSCs to be used in a clinical setting. In view of this, a variety of alternative techniques have been developed to induce pluripotency in somatic cells. This review provides an overview on current reprogramming protocols, discusses their pros and cons and future challenges to provide safe and transgene-free iPSCs.