de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Book Chapter

Future of Medicine: Models in Predictive Diagnostics and Personalized Medicine

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons85170

Zazzu,  V.
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50580

Sudbrak,  R.
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons50409

Lehrach,  H.
Dept. of Vertebrate Genomics (Head: Hans Lehrach), Max Planck Institute for Molecular Genetics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Regierer, B., Zazzu, V., Sudbrak, R., Kühn, A., & Lehrach, H. (2013). Future of Medicine: Models in Predictive Diagnostics and Personalized Medicine. In H. Seitz, & S. Schuhmacher (Eds.), Advances in Biochemical Engineering/Biotechnology (pp. 15-33). Berlin Heidelberg: Springer.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0018-F98E-1
Abstract
Molecular medicine is undergoing fundamental changes driving the whole area towards a revolution in modern medicine. The breakthrough was generated the fast-developing technologies in molecular biology since the first draft sequence of the human genome was published. The technological advances enabled the analysis of biological samples from cells and organs to whole organisms in a depth that was not possible before. These technologies are increasingly implemented in the medical and health care system to study diseases and refine diagnostics. As a consequence, the understanding of diseases and the health status of an individual patient is now based on an enormous amount of data that can only be interpreted in the context of the body as a whole. Systems biology as a new field in the life sciences develops new approaches for data integration and interpretation. Systems medicine as a specialized aspect of systems biology combines in an interdisciplinary approach all expertise necessary to decipher the human body in all its complexity. This created new challenges in the area of information and communication technologies to provide the infrastructure and technology needed to cope with the data flood that will accompany the next generation of medicine. The new initiative 'IT Future of Medicine' aims at driving this development even further and integrates not only molecular data (especially genomic information), but also anatomical, physiological, environmental, and lifestyle data in a predictive model approach-the 'virtual patient'-that will allow the clinician or the general practitioner to predict and anticipate the optimal treatment for the individual patient. The application of the virtual patient model will allow truly personalized medicine.