de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Simple analytical approximations for treatment of inverse Compton scattering of relativistic electrons in the black-body radiation field

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons30244

Aharonian,  Felix A.
Division Prof. Dr. Werner Hofmann, MPI for Nuclear Physics, Max Planck Society;
Dublin Institute for Advanced Studies, 31 Fitzwilliam Place, Dublin 2, Ireland ;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons30663

Kelner,  Stanislav R.
Division Prof. Dr. Werner Hofmann, MPI for Nuclear Physics, Max Planck Society;
National Research Nuclear University, Kashira Highway 31, 115409 Moscow, Russia;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1310.7971.pdf
(Preprint), 321KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Khangulyan, D., Aharonian, F. A., & Kelner, S. R. (2014). Simple analytical approximations for treatment of inverse Compton scattering of relativistic electrons in the black-body radiation field. The Astrophysical Journal, 783(2): 100. doi:10.1088/0004-637X/783/2/100.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0018-BCF8-3
Zusammenfassung
The inverse Compton (IC) scattering of relativistic electrons is one of the major gamma-ray production mechanisms in different environments. Often the target photons for the IC scattering are dominated by black (or grey) body radiation. In this case, the precise treatment of the characteristics of IC radiation requires numerical integrations over the Planckian distribution. Formally, analytical integrations are also possible but they result in series of several special functions; this limits the efficiency of usage of these expressions. The aim of this work is the derivation of approximate analytical presentations which would provide adequate accuracy for the calculations of the energy spectra of up-scattered radiation, the rate of electron energy losses, and the mean energy of emitted photons. Such formulae have been obtained by merging the analytical asymptotic limits. The coefficients in these expressions are calculated via the least square fitting of the results of numerical integrations. The simple analytical presentations, obtained for both the isotropic and anisotropic target radiation fields, provide adequate (as good as $1\%$) accuracy for broad astrophysical applications.