English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Unveiling the Long-Held Secrets of the 26S Proteasome

MPS-Authors
/persons/resource/persons77965

Förster,  Friedrich
Förster, Friedrich / Modeling of Protein Complexes, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons78814

Unverdorben,  Pia
Förster, Friedrich / Modeling of Protein Complexes, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons96524

Sledz,  Pawel
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

/persons/resource/persons77721

Baumeister,  Wolfgang
Baumeister, Wolfgang / Molecular Structural Biology, Max Planck Institute of Biochemistry, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Förster, F., Unverdorben, P., Sledz, P., & Baumeister, W. (2013). Unveiling the Long-Held Secrets of the 26S Proteasome. STRUCTURE, 21(9), 1551-1562. doi:10.1016/j.str.2013.08.010.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0015-86E4-8
Abstract
The 26S proteasome is a 2.5 MDa molecular machine for the degradation of substrates of the ubiquitin-proteasome pathway with a key role in cellular proteostasis. Until recently, only the structure of its core particle, the 20S proteasome, could be studied in detail, whereas the 19S regulatory particle or the holocomplex remained elusive. Novel integrative approaches have now revealed the molecular architecture of the entire complex and provided the first insights into the conformational changes during its functional cycle. Here we review the problems in structural studies of the 26S proteasome, the methods that made possible its structure determination, the architectural principles of the holocomplex, and its conformational space. These advances provide valuable insights into the mechanism of substrate recruitment and processing preceding their destruction in the 20S core particle.