de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Forschungspapier

From Approximate Factorization to Root Isolation with Application to Cylindrical Algebraic Decomposition

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons45021

Mehlhorn,  Kurt
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45332

Sagraloff,  Michael
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons79533

Wang,  Pengming
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

arXiv:1301.4870.pdf
(Preprint), 353KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Mehlhorn, K., Sagraloff, M., & Wang, P. (2013). From Approximate Factorization to Root Isolation with Application to Cylindrical Algebraic Decomposition. Retrieved from http://arxiv.org/abs/1301.4870.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0018-AB2E-0
Zusammenfassung
We present an algorithm for isolating the roots of an arbitrary complex polynomial $p$ that also works for polynomials with multiple roots provided that the number $k$ of distinct roots is given as part of the input. It outputs $k$ pairwise disjoint disks each containing one of the distinct roots of $p$, and its multiplicity. The algorithm uses approximate factorization as a subroutine. In addition, we apply the new root isolation algorithm to a recent algorithm for computing the topology of a real planar algebraic curve specified as the zero set of a bivariate integer polynomial and for isolating the real solutions of a bivariate polynomial system. For input polynomials of degree $n$ and bitsize $\tau$, we improve the currently best running time from $\tO(n^{9}\tau+n^{8}\tau^{2})$ (deterministic) to $\tO(n^{6}+n^{5}\tau)$ (randomized) for topology computation and from $\tO(n^{8}+n^{7}\tau)$ (deterministic) to $\tO(n^{6}+n^{5}\tau)$ (randomized) for solving bivariate systems.