de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Pursuit Calibration: Making Gaze Calibration Less Tedious and More Flexible

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons86799

Bulling,  Andreas
Computer Vision and Multimodal Computing, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Pfeuffer, K., Vidal, M., Turner, J., Bulling, A., & Gellersen, H. (2013). Pursuit Calibration: Making Gaze Calibration Less Tedious and More Flexible. In S. Izadi, A. Quigley, I. Poupyrev, & T. Igarashi (Eds.), UIST'13 (pp. 261-270). New York, NY: ACM. doi:10.1145/2501988.2501998.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0018-082C-6
Zusammenfassung
Eye gaze is a compelling interaction modality but requires a user calibration before interaction can commence. State of the art procedures require the user to fixate on a succession of calibration markers, a task that is often experienced as difficult and tedious. We present a novel approach, pursuit calibration, that instead uses moving targets for calibration. Users naturally perform smooth pursuit eye movements when they follow a moving target, and we use correlation of eye and target movement to detect the users attention and to sample data for calibration. Because the method knows when the users is attending to a target, the calibration can be performed implicitly, which enables more flexible design of the calibration task. We demonstrate this in application examples and user studies, and show that pursuit calibration is tolerant to interruption, can blend naturally with applications, and is able to calibrate users without their awareness.