de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Clathrate Ba6Ge25: Thermodynamic, magnetic, and transport properties

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons126794

Paschen,  S.
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126885

Tran,  V. H.
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126528

Baenitz,  M.
Michael Baenitz, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126563

Carrillo-Cabrera,  W.
Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126626

Grin,  Y.
Juri Grin, Chemical Metal Science, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126861

Steglich,  F.
Frank Steglich, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Paschen, S., Tran, V. H., Baenitz, M., Carrillo-Cabrera, W., Grin, Y., & Steglich, F. (2002). Clathrate Ba6Ge25: Thermodynamic, magnetic, and transport properties. Physical Review B, 65(13): 134435, pp. 134435-134435. doi:10.1103/PhysRevB.65.134435.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0015-3165-4
Zusammenfassung
The recently discovered clathrate Ba6Ge25 undergoes a two-step first-order phase transition at the temperatures T(S1,S2)approximate to215, 180 K. The first-order nature of the transition is evidenced from the hysteretical temperature dependences of the electrical resistivity rho(T), the Hall coefficient R-H(T), and the magnetic susceptibility as well as from the temperature dependence of the specific heat. rho(T) increases drastically below T-S1,T-S2, but the charge-carrier concentration, as determined from R-H(T), is virtually unaffected by the phase transition. Thus, it is the charge- carrier mobility which is strongly reduced below T-S1,T-S2. Taking these observations together with results from a recent structural investigation we conclude that the "locking-in" of "rattling" Ba atoms to off-center positions in the Ge cages is responsible for the mobility reduction of the conduction electrons. It is due to this strong electron-phonon interaction that, while the concept of a "phonon glass" appears to be fulfilled, the concept of an "electron crystal" is heavily violated, in contrast to other filled-cage systems. In the phase Ba6-xEuxGe25 (xless than or equal to0.6), T-S1,T-S2 is quickly suppressed with increasing x and, in Ba4Na2Ge25 [Ba6- xNaxGe25 (x=2)], the locking-in transition is absent alltogether at temperatures below 400 K.