de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Kondo ion electron spin resonance in YbRh2(Si1-xGex)2(x = 0.05)

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons126851

Sichelschmidt,  J.
Jörg Sichelschmidt, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126603

Ferstl,  J.
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126614

Geibel,  C.
Christoph Geibel, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126861

Steglich,  F.
Frank Steglich, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Sichelschmidt, J., Ferstl, J., Geibel, C., & Steglich, F. (2005). Kondo ion electron spin resonance in YbRh2(Si1-xGex)2(x = 0.05). Physica B-Condensed Matter, 359-361, 17-19. doi:10.1016/j.physb.2004.12.042.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0015-2CDF-E
Zusammenfassung
We report electron spin resonance (ESR) results for the heavy fermion metal YbRh2(Si1-xGex)2(x=0.05)YbRh2(Si1-xGex)2(x=0.05), where Ge doping suppresses the antiferromagnetic (AFM) ordering and thus brings the system very close to a AFM quantum critical point. The well-defined properties of the ESR signal demonstrate its origin from the Kondo ion Yb3+Yb3+ itself. A comparison with previous ESR results on the Ge-undoped compound stresses the need for a ESR-consistent local moment screening temperature close to zero. Our results are consistent with the localized moment scenario of quantum criticality.