de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Kondo ion electron spin resonance in YbRh2(Si1-xGex)2(x = 0.05)

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons126851

Sichelschmidt,  J.
Jörg Sichelschmidt, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126603

Ferstl,  J.
Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126614

Geibel,  C.
Christoph Geibel, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons126861

Steglich,  F.
Frank Steglich, Physics of Quantum Materials, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Sichelschmidt, J., Ferstl, J., Geibel, C., & Steglich, F. (2005). Kondo ion electron spin resonance in YbRh2(Si1-xGex)2(x = 0.05). Physica B-Condensed Matter, 359-361, 17-19. doi:10.1016/j.physb.2004.12.042.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0015-2CDF-E
Abstract
We report electron spin resonance (ESR) results for the heavy fermion metal YbRh2(Si1-xGex)2(x=0.05)YbRh2(Si1-xGex)2(x=0.05), where Ge doping suppresses the antiferromagnetic (AFM) ordering and thus brings the system very close to a AFM quantum critical point. The well-defined properties of the ESR signal demonstrate its origin from the Kondo ion Yb3+Yb3+ itself. A comparison with previous ESR results on the Ge-undoped compound stresses the need for a ESR-consistent local moment screening temperature close to zero. Our results are consistent with the localized moment scenario of quantum criticality.