Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Analysis of charge and orbital order in Fe3O4 by Fe L2,3 resonant x-ray diffraction

MPG-Autoren
/persons/resource/persons126565

Chang,  C. F.
Chun-Fu Chang, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

/persons/resource/persons126881

Tjeng,  L. H.
Liu Hao Tjeng, Physics of Correlated Matter, Max Planck Institute for Chemical Physics of Solids, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Tanaka, A., Chang, C. F., Buchholz, M., Trabant, C., Schierle, E., Schlappa, J., et al. (2013). Analysis of charge and orbital order in Fe3O4 by Fe L2,3 resonant x-ray diffraction. Physical Review B, 88(19): 195110, pp. 195110-1-195110-15. doi:10.1103/PhysRevB.88.195110.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0015-1E28-6
Zusammenfassung
To elucidate charge and orbital order below the Verwey transition temperature T-V similar to 125 K, a thin layer of magnetite partially detwined by growth on the steppedMgO(001) substrate has been studied by means of soft x-ray diffraction at the Fe L-2,L-3 resonance. The azimuth angle, incident photon polarization, and energy dependence of the (001/2)(c) and (001)(c) reflection intensities have been measured, and analyzed using a configuration-interaction FeO6 cluster model. The azimuth dependence of the (001/2)(c) reflection intensities directly represents the space-group symmetry of the orbital order in the initial state rather than indirectly through the intermediate-state level shifts caused by the order-induced lattice distortions. From the analysis of the (00 1 2) c reflection intensities, the orbital order in the t2g orbitals of B sites below T-V is proved to have a large monoclinic deformation with the value of Re[F-xy]/Re[F-yz] similar to 2. This finding contradicts the majority of theories on the Verwey transition so far proposed. We show that the experimentally observed resonance spectra cannot be explained by orbital and charge orders obtained with recent LDA+ U and GGA+ U band structure calculations but by a complex-number orbital order with excellent agreement.