de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Datenschutzhinweis Impressum Kontakt
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Resolving multiple supermassive black hole binaries with pulsar timing arrays II: genetic algorithm implementation

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons20664

Petiteau,  Antoine
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons20655

Babak,  Stanislav
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons2713

Sesana,  Alberto
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1210.2396.pdf
(Preprint), 2MB

PRD87_064036.pdf
(beliebiger Volltext), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Petiteau, A., Babak, S., Sesana, A., & de Araujo, M. (2013). Resolving multiple supermassive black hole binaries with pulsar timing arrays II: genetic algorithm implementation. Physical Review D, 87: 064036. doi:10.1103/PhysRevD.87.064036.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0015-1927-E
Zusammenfassung
Pulsar timing arrays (PTAs) might detect gravitational waves (GWs) from massive black hole (MBH) binaries within this decade. The signal is expected to be an incoherent superposition of several nearly-monochromatic waves of different strength. The brightest sources might be individually resolved, and the overall deconvolved, at least partially, in its individual components. In this paper we extend the maximum-likelihood based method developed in Babak & Sesana 2012, to search for individual MBH binaries in PTA data. We model the signal as a collection of circular monochromatic binaries, each characterized by three free parameters: two angles defining the sky location, and the frequency. We marginalize over all other source parameters and we apply an efficient multi-search genetic algorithm to maximize the likelihood function and look for sources in synthetic datasets. On datasets characterized by white Gaussian noise plus few injected sources with signal-to-noise ratio (SNR) in the range 10-60, our search algorithm performs well, recovering all the injections with no false positives. Individual source SNRs are estimated within few % of the injected values, sky locations are recovered within few degrees, and frequencies are determined with sub-Fourier bin precision.