English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Computational NMR coupling constants: Shifting and scaling factors for evaluating 1JCH

MPS-Authors
/persons/resource/persons58496

Crespo-Otero,  Rachel
Research Group Barbatti, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

mrc4014-sup-0001-tablesS1-S10_and_figureS2.pdf
(Supplementary material), 14MB

Citation

San Fabián, J., García de la Vega, J. M., Suardíaz, R., Fernández-Oliva, M., Pérez, C., Crespo-Otero, R., et al. (2013). Computational NMR coupling constants: Shifting and scaling factors for evaluating 1JCH. Magnetic Resonance in Chemistry, 51(12), 775-787. doi:10.1002/mrc.4014.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-F4C3-5
Abstract
Optimized shifting and/or scaling factors for calculating one-bond carbon–hydrogen spin–spin coupling constants have been determined for 35 combinations of representative functionals (PBE, B3LYP, B3P86, B97-2 and M06-L) and basis sets (TZVP, HIII-su3, EPR-III, aug-cc-pVTZ-J, ccJ-pVDZ, ccJ-pVTZ, ccJ-pVQZ, pcJ-2 and pcJ-3) using 68 organic molecular systems with 88 1JCH couplings including different types of hybridized carbon atoms. Density functional theory assessment for the determination of 1JCH coupling constants is examined, comparing the computed and experimental values. The use of shifting constants for obtaining the calculated coupling improves substantially the results, and most models become qualitatively similar. Thus, for the whole set of couplings and for all approaches excluding those using the M06 functional, the root-mean-square deviations lie between 4.7 and 16.4 Hz and are reduced to 4–6.5 Hz when shifting constants are considered. Alternatively, when a specific rovibrational contribution of 5 Hz is subtracted from the experimental values, good results are obtained with PBE, B3P86 and B97-2 functionals in combination with HIII-su3, aug-cc-pVTZ-J and pcJ-2 basis sets.