de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Laser-driven generation of collimated ultra-relativistic positron beams

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons30413

Di Piazza,  A.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons30659

Keitel,  C. H.
Division Prof. Dr. Christoph H. Keitel, MPI for Nuclear Physics, Max Planck Society;

Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Sarri, G., Schumaker, W., Di Piazza, A., Poder, K., Cole, J. M., Vargas, M., et al. (2013). Laser-driven generation of collimated ultra-relativistic positron beams. Plasma Physics and Controlled Fusion, 55(12): 124017. doi:10.1088/0741-3335/55/12/124017.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-C63A-4
Abstract
We report on recent experimental results concerning the generation of collimated (divergence of the order of a few mrad) ultra-relativistic positron beams using a fully optical system. The positron beams are generated exploiting a quantum-electrodynamic cascade initiated by the propagation of a laser-accelerated, ultra-relativistic electron beam through high-Z solid targets. As long as the target thickness is comparable to or smaller than the radiation length of the material, the divergence of the escaping positron beam is of the order of the inverse of its Lorentz factor. For thicker solid targets the divergence is seen to gradually increase, due to the increased number of fundamental steps in the cascade, but it is still kept of the order of few tens of mrad, depending on the spectral components in the beam. This high degree of collimation will be fundamental for further injection into plasma-wakefield afterburners.