de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Second Quantized Mathieu Moonshine

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons39398

Volpato,  Roberto
Quantum Gravity & Unified Theories, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1312.0622.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Persson, D., & Volpato, R. (2014). Second Quantized Mathieu Moonshine. Communications in Number Theory and Physics, 8(3), 403-509. doi:10.4310/CNTP.2014.v8.n3.a2.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-BF13-4
Zusammenfassung
We study the second quantized version of the twisted twining genera of generalized Mathieu moonshine, and verify that they give rise to Siegel modular forms with infinite product representations. Most of these forms are expected to have an interpretation as twisted partition functions counting 1/4 BPS dyons in type II superstring theory on K3\times T^2 or in heterotic CHL-models. We show that all these Siegel modular forms, independently of their possible physical interpretation, satisfy an "S-duality" transformation and a "wall-crossing formula". The latter reproduces all the eta-products of an older version of generalized Mathieu moonshine proposed by Mason in the '90s. Surprisingly, some of the Siegel modular forms we find coincide with the multiplicative (Borcherds) lifts of Jacobi forms in umbral moonshine.