de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Modeling biomass burning and related carbon emissions during the 21st century in Europe

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons62486

Migliavacca,  Mirco
Biosphere-Atmosphere Interactions and Experimentation, Dr. M. Migliavacca, Department Biogeochemical Integration, Dr. M. Reichstein, Max Planck Institute for Biogeochemistry, Max Planck Society;

Locator
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Migliavacca, M., Dosio, A., Camia, A., Hobourg, R., Houston-Durrant, T., Kaiser, J. W., et al. (2013). Modeling biomass burning and related carbon emissions during the 21st century in Europe. Journal of Geophysical Research-Biogeosciences, 118(4), 1732-1747. doi:10.1002/2013JG002444.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-B980-9
Abstract
In this study we present an assessment of the impact of future climate change on total fire probability, burned area, and carbon (C) emissions from fires in Europe. The analysis was performed with the Community Land Model (CLM) extended with a prognostic treatment of fires that was specifically refined and optimized for application over Europe. Simulations over the 21st century are forced by 5 different high resolution Regional Climate Models (RCMs) under the Special Report on Emissions Scenarios (SRES) A1B emission scenario. Both original and bias corrected meteorological forcings is used. Results show that the simulated C emissions over the present period are improved by using bias corrected meteorological forcing, with a reduction of the inter-model variability. In the course of the 21st century burned area and C emissions from fires are shown to increase in Europe, in particular in the Mediterranean basins, in the Balkan regions and in Eastern Europe. However, the projected increase is lower than in other studies that did not fully account for the effect of climate on ecosystem functioning. We demonstrate that the lower sensitivity of burned area and C emissions to climate change is related to the predicted reduction of the net primary productivity (NPP), which is identified as the most important determinant of fire activity in the Mediterranean region after anthropogenic interaction. This behavior, consistent with the intermediate fire-productivity hypothesis, limits the sensitivity of future burned area and C emissions from fires on climate change, providing more conservative estimates of future fire patterns, and demonstrates the importance of coupling fire simulation with a climate driven ecosystem productivity model.