Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Interactive Cloud Rendering Using Temporally Coherent Photon Mapping

MPG-Autoren
/persons/resource/persons123216

Elek,  Oskar
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45298

Ritschel,  Tobias
Computer Graphics, MPI for Informatics, Max Planck Society;

/persons/resource/persons45449

Seidel,  Hans-Peter       
Computer Graphics, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine externen Ressourcen hinterlegt
Volltexte (beschränkter Zugriff)
Für Ihren IP-Bereich sind aktuell keine Volltexte freigegeben.
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte in PuRe verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Elek, O., Ritschel, T., Wilkie, A., & Seidel, H.-P. (2012). Interactive Cloud Rendering Using Temporally Coherent Photon Mapping. Computers & Graphics, 36(8), 1109-1118. doi:10.1016/j.cag.2012.10.002.


Zitierlink: https://hdl.handle.net/11858/00-001M-0000-0014-F427-5
Zusammenfassung
This work presents a novel interactive algorithm for simulation of light
transport in clouds. Exploiting the high temporal coherence of the typical
illumination and morphology of clouds we build on volumetric photon mapping,
which we modify to allow for interactive rendering speeds -- instead of
building a fresh irregular photon map for every scene state change we
accumulate photon contributions in a regular grid structure. This is then
continuously being refreshed by re-shooting only a fraction of the total amount
of photons in each frame. To maintain its temporal coherence and low variance,
a low-resolution grid is initially used, and is then upsampled to the density
field resolution on a physical basis in each frame. We also present a technique
to store and reconstruct the angular illumination information by exploiting
properties of the standard Henyey-Greenstein function, namely its ability to
express anisotropic angular distributions with a single dominating direction.
The presented method is physically-plausible, conceptually simple and
comparatively easy to implement. Moreover, it operates only above the cloud
density field, thus not requiring any precomputation, and handles all light
sources typical for the given environment, i.e. where one of the light sources
dominates.