de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Interactive Cloud Rendering Using Temporally Coherent Photon Mapping

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons123216

Elek,  Oskar
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45298

Ritschel,  Tobias
Computer Graphics, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45449

Seidel,  Hans-Peter
Computer Graphics, MPI for Informatics, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
There is no public supplementary material available
Citation

Elek, O., Ritschel, T., Wilkie, A., & Seidel, H.-P. (2012). Interactive Cloud Rendering Using Temporally Coherent Photon Mapping. Computers & Graphics, 36(8), 1109-1118. doi:10.1016/j.cag.2012.10.002.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-F427-5
Abstract
This work presents a novel interactive algorithm for simulation of light transport in clouds. Exploiting the high temporal coherence of the typical illumination and morphology of clouds we build on volumetric photon mapping, which we modify to allow for interactive rendering speeds -- instead of building a fresh irregular photon map for every scene state change we accumulate photon contributions in a regular grid structure. This is then continuously being refreshed by re-shooting only a fraction of the total amount of photons in each frame. To maintain its temporal coherence and low variance, a low-resolution grid is initially used, and is then upsampled to the density field resolution on a physical basis in each frame. We also present a technique to store and reconstruct the angular illumination information by exploiting properties of the standard Henyey-Greenstein function, namely its ability to express anisotropic angular distributions with a single dominating direction. The presented method is physically-plausible, conceptually simple and comparatively easy to implement. Moreover, it operates only above the cloud density field, thus not requiring any precomputation, and handles all light sources typical for the given environment, i.e. where one of the light sources dominates.