de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Konferenzbeitrag

Convergence of Hypervolume-based Archiving Algorithms II: Competitiveness

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44182

Bringmann,  Karl
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44447

Friedrich,  Tobias
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)
Es sind keine frei zugänglichen Volltexte verfügbar
Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Bringmann, K., & Friedrich, T. (2012). Convergence of Hypervolume-based Archiving Algorithms II: Competitiveness. In GECCO'12 (pp. 457-464). New York, NY: ACM.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-BBD0-7
Zusammenfassung
We study the convergence behavior of (+)-archiving algorithms. A (+)- archiving algorithm defines how to choose in each generation  children from  parents and  offspring together. Archiving algorithms have to choose individuals online without knowing future offspring. Previous studies assumed the offspring generation to be best-case. We assume the initial population and the offspring generation to be worst-case and use the competitive ratio to measure how much smaller hypervolumes an archiving algorithm finds due to not knowing the future in advance. We prove that all archiving algorithms which increase the hypervolume in each step (if they can) are only -competitive. We also present a new archiving algorithm which is (4 + 2/)-competitive. This algorithm not only achieves a constant competitive ratio, but is also efficiently computable. Both properties provably do not hold for the commonly used greedy archiving algorithms, for example those used in SIBEA, SMS-EMOA, or the generational MO-CMA-ES.