English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

A New Type of Stereoselectivity in Baeyer–Villiger Reactions: Access to E- and Z-Olefins

MPS-Authors
/persons/resource/persons59138

Zhang,  Zhi-Gang
Research Department Reetz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Philipps-Universität Marburg, Fachbereich Chemie;

/persons/resource/persons58934

Roiban,  Georghe-Doru
Research Department Reetz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Philipps-Universität Marburg, Fachbereich Chemie;

/persons/resource/persons58894

Polyak,  Iakov
Research Department Thiel, Max-Planck-Institut für Kohlenforschung, Max Planck Society;

/persons/resource/persons58919

Reetz,  Manfred T.
Research Department Reetz, Max-Planck-Institut für Kohlenforschung, Max Planck Society;
Philipps-Universität Marburg, Fachbereich Chemie;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

adsc_201200759_sm_miscellaneous_information.pdf
(Supplementary material), 4MB

Citation

Zhang, Z.-G., Roiban, G.-D., Acevedo, J. P., Polyak, I., & Reetz, M. T. (2013). A New Type of Stereoselectivity in Baeyer–Villiger Reactions: Access to E- and Z-Olefins. Advanced Synthesis & Catalysis, 355(1), 99-106. doi:10.1002/adsc.201200759.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-C920-4
Abstract
A new concept for accessing configurationally defined trisubstituted olefins has been developed. Starting from a common ketone precursor of the type 4-ethylidenecyclohexanone, Baeyer–Villiger monooxygenases are employed as catalysts in diastereoselective Baeyer–Villiger reactions leading to the corresponding E- or Z-configurated lactones. Wild-type cyclohexanone monooxygenase (CHMO) as catalyst delivers the E-isomers and a directed evolution mutant the opposite Z-isomers. Subsequent transition metal-catalyzed chemical transformations of a key product containing a vinyl bromide moiety provide a variety of different trisubstituted E- or Z-olefins. A model based on QM/MM sheds light on the origin of this unusual type of diastereoselectivity. In contrast to this biocatalytic approach, traditional Baeyer–Villiger reagents such as m-CPBA fail to show any selectivity, 1:1 mixtures of E- and Z-olefins being formed.