English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Anion-Binding Properties of a Cyclic Pseudohexapeptide Containing 1,5-Disubstituted 1,2,3-Triazole Subunits

MPS-Authors
/persons/resource/persons58578

Goddard,  Richard
Service Department Lehmann (EMR), Max-Planck-Institut für Kohlenforschung, Max Planck Society;

Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)

jo201024r_si_001.pdf
(Supplementary material), 3MB

Citation

Krause, M. R., Goddard, R., & Kubik, S. (2011). Anion-Binding Properties of a Cyclic Pseudohexapeptide Containing 1,5-Disubstituted 1,2,3-Triazole Subunits. The Journal of Organic Chemistry, 76(17), 7084-7095. doi:10.1021/jo201024r.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-C9A6-5
Abstract
A C3 symmetric cyclic pseudohexapeptide containing 2-aminopicoline-derived subunits and 1,5-disubstituted 1,2,3-triazole rings is introduced as a potent anion receptor. This macrocycle was designed to mimic both the conformation and the receptor properties of a previously described cyclic hexapeptide containing alternating l-proline and 6-aminopicolinic acid subunits. Conformational analyses demonstrate that the cyclic peptide and the cyclic pseudopeptide are structurally closely related. Most importantly, both exhibit a converging arrangement of the NH groups, hence a good preorganization for anion binding. As a consequence, the pseudopeptide also very efficiently interacts with halide and sulfate ions, and this is the case even in competitive aqueous solvent mixtures. However, there are clear differences in the structures of both compounds, which translate into characteristic differences in receptor properties. Specifically, (i) the pseudopeptide possesses an anion affinity intrinsically higher than that of the cyclopeptide, (ii) the pseudopeptide is well preorganized for anion binding in a wider range of solvents from aprotic to protic, (iii) anion affinity in aprotic solvents is very high and associated with complexation equilibria that are slow on the NMR time-scale, (iv) the propensity of the pseudopeptide to form sandwich-type 2:1 complexes with two receptor molecules surrounding one anion is significantly lower than that of the cyclopeptide. A solvent-dependent calorimetric characterization of the binding equilibria of both compounds provided clear evidence for the stabilizing effect of hydrophobic interactions between the receptor subunits in such 2:1 complexes. The pseudopeptide thus represents the first member of a new family of anion receptors whose properties may be fine-tuned by varying the side chains in the periphery of the cavity.