de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Search for continuous gravitational waves: improving robustness versus instrumental artifacts

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons41554

Keitel,  D.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons40534

Prix,  R.
Observational Relativity and Cosmology, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons20662

Papa,  M. A.
Astrophysical Relativity, AEI-Golm, MPI for Gravitational Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons40473

Leaci,  P.
Laser Interferometry & Gravitational Wave Astronomy, AEI-Hannover, MPI for Gravitational Physics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

1311.5738v1.pdf
(Preprint), 912KB

PhysRevD.89_064023.pdf
(beliebiger Volltext), 881KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Keitel, D., Prix, R., Papa, M. A., Leaci, P., & Siddiqi, M. (2014). Search for continuous gravitational waves: improving robustness versus instrumental artifacts. Physical Review D, 89: 064023. doi:10.1103/PhysRevD.89.064023.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-A921-F
Zusammenfassung
The standard multi-detector F-statistic for continuous gravitational waves is susceptible to false alarms from instrumental artifacts, for example monochromatic sinusoidal disturbances (lines). This vulnerability to line artifacts arises because the F-statistic compares the signal hypothesis to a Gaussian-noise hypothesis, and hence is triggered by anything that resembles the signal hypothesis more than Gaussian noise. Various ad-hoc veto methods to deal with such line artifacts have been proposed and used in the past. Here we develop a Bayesian framework that includes an explicit alternative hypothesis to model disturbed data. We introduce a simple line model that defines lines as signal candidates appearing only in one detector. This allows us to explicitly compute the odds between the signal hypothesis and an extended noise hypothesis, resulting in a new detection statistic that is more robust to instrumental artifacts. We present and discuss results from Monte-Carlo tests on both simulated data and on detector data from the fifth LIGO science run. We find that the line-robust detection statistic retains the detection power of the standard F-statistic in Gaussian noise, while it can be substantially more sensitive in the presence of line artifacts. This new statistic also equals or surpasses the performance of the popular F-statistic consistency veto.