de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Bericht

A branch and cut algorithm for the optimal solution of the side-chain placement problem

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons44003

Althaus,  Ernst
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44815

Kohlbacher,  Oliver
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons44909

Lenhof,  Hans-Peter
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons45078

Müller,  Peter
Algorithms and Complexity, MPI for Informatics, Max Planck Society;

Externe Ressourcen
Es sind keine Externen Ressourcen verfügbar
Volltexte (frei zugänglich)

2000-1-001
(beliebiger Volltext), 11KB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Althaus, E., Kohlbacher, O., Lenhof, H.-P., & Müller, P.(2000). A branch and cut algorithm for the optimal solution of the side-chain placement problem (MPI-I-2000-1-001).


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-A866-0
Zusammenfassung
Rigid--body docking approaches are not sufficient to predict the structure of a protein complex from the unbound (native) structures of the two proteins. Accounting for side chain flexibility is an important step towards fully flexible protein docking. This work describes an approach that allows conformational flexibility for the side chains while keeping the protein backbone rigid. Starting from candidates created by a rigid--docking algorithm, we demangle the side chains of the docking site, thus creating reasonable approximations of the true complex structure. These structures are ranked with respect to the binding free energy. We present two new techniques for side chain demangling. Both approaches are based on a discrete representation of the side chain conformational space by the use of a rotamer library. This leads to a combinatorial optimization problem. For the solution of this problem we propose a fast heuristic approach and an exact, albeit slower, method that uses branch--\&--cut techniques. As a test set we use the unbound structures of three proteases and the corresponding protein inhibitors. For each of the examples, the highest--ranking conformation produced was a good approximation of the true complex structure.