English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time

MPS-Authors
/persons/resource/persons31169

Wenz,  A. N.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, 69210 Heidelberg, Germany;

/persons/resource/persons31216

Zürn,  G.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, 69210 Heidelberg, Germany;

/persons/resource/persons59278

Murmann,  Simon
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, 69210 Heidelberg, Germany;

/persons/resource/persons30777

Lompe,  T.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, 69210 Heidelberg, Germany;

/persons/resource/persons30636

Jochim,  S.
Division Prof. Dr. Joachim H. Ullrich, MPI for Nuclear Physics, Max Planck Society;
Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, 69210 Heidelberg, Germany;
Extreme Matter Institute (EMMI), GSI Helmholtzzentrum für Schwerionenforschung, 64291 Darmstadt, Germany;

External Resource
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)

1307.3443.pdf
(Preprint), 956KB

Supplementary Material (public)
There is no public supplementary material available
Citation

Wenz, A. N., Zürn, G., Murmann, S., Brouzos, I., Lompe, T., & Jochim, S. (2013). From Few to Many: Observing the Formation of a Fermi Sea One Atom at a Time. Science, 342(6157), 457-460. doi:10.1126/science.1240516.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-A218-1
Abstract
Knowing when a physical system has reached sufficient size for its macroscopic properties to be well described by many-body theory is difficult. We investigate the crossover from few to many-body physics by studying quasi one-dimensional systems of ultracold atoms consisting of a single impurity interacting with an increasing number of identical fermions. We measure the interaction energy of such a system as a function of the number of majority atoms for different strengths of the interparticle interaction. As we increase the number of majority atoms one by one we observe the fast convergence of the normalized interaction energy towards a many-body limit calculated for a single impurity immersed in a Fermi sea of majority particles.