de.mpg.escidoc.pubman.appbase.FacesBean
English
 
Help Guide Disclaimer Contact us Login
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Polarity-Free Epitaxial Growth of Heterostructured ZnO/ZnS Core/Shell Nanobelts

MPS-Authors
http://pubman.mpdl.mpg.de/cone/persons/resource/persons39194

Huang,  Xing
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;
Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences;
University of Chinese Academy of Sciences;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons22107

Shao,  Lidong
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons22243

Willinger,  Marc Georg
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

Locator
There are no locators available
Fulltext (public)
There are no public fulltexts available
Supplementary Material (public)
Citation

Huang, X., Wang, M., Shao, L., Willinger, M. G., Lee, C.-S., & Meng, X.-M. (2013). Polarity-Free Epitaxial Growth of Heterostructured ZnO/ZnS Core/Shell Nanobelts. The Journal of Physical Chemistry Letters, 4(5), 740-744. doi:10.1021/jz4001533.


Cite as: http://hdl.handle.net/11858/00-001M-0000-0014-A0C4-F
Abstract
Surface-polarity-induced formation of ZnO/ZnS heterojunctions has a common characteristic that ZnS (or ZnO) is exclusively decorated on a Zn-terminated (0001) surface of ZnO (or ZnS) due to its comparatively chemically active nature to an O (or S)-terminated (000–1) surface. Here, we report a polarity-free and symmetrical growth of ZnS on both ZnO±(0001) surfaces to form a new heterostructured ZnO/ZnS core/shell nanobelt via a thermal evaporation method. Remarkably, the ZnS shell is single-crystalline and preserves the structure and orientation of the inner ZnO nanobelt with an epitaxial relationship of (0001)ZnO//(0001)ZnS; [2–1–10]ZnO//[2–1–10]ZnS. Through this case, we demonstrate that an anion-terminated polar surface could also drive the nucleation and growth of nanostructures as the cation-terminated surface by controlling the growth kinetics. Considering high-performance devices based on ZnO/ZnS heterojunctions, the current ZnO/ZnS nanobelt is advantageous for optoelectronic applications due to its single-crystalline nature and relatively more efficient charge separation along 3D heterointerfaces.