English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT

Released

Journal Article

Cu-Based Catalyst Resulting from a Cu,Zn,Al Hydrotalcite-Like Compound: A Microstructural, Thermoanalytical, and In Situ XAS Study

MPS-Authors
/persons/resource/persons21771

Kühl,  Stefanie
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons32715

Tarasov,  Andrey
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21725

Zander,  Stefan
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21700

Kasatkin,  Igor
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

/persons/resource/persons21347

Behrens,  Malte
Inorganic Chemistry, Fritz Haber Institute, Max Planck Society;

External Resource
No external resources are shared
Fulltext (restricted access)
There are currently no full texts shared for your IP range.
Fulltext (public)
There are no public fulltexts stored in PuRe
Supplementary Material (public)
There is no public supplementary material available
Citation

Kühl, S., Tarasov, A., Zander, S., Kasatkin, I., & Behrens, M. (2014). Cu-Based Catalyst Resulting from a Cu,Zn,Al Hydrotalcite-Like Compound: A Microstructural, Thermoanalytical, and In Situ XAS Study. Chemistry - A European Journal, 20(13), 3782-3792. doi:10.1002/chem.201302599.


Cite as: https://hdl.handle.net/11858/00-001M-0000-0014-9970-F
Abstract
A Cu-based methanol synthesis catalyst was obtained from a phase pure Cu,Zn,Al hydrotalcite-like precursor, which was prepared by co-precipitation. This sample was intrinsically more active than a conventionally prepared Cu/ZnO/Al2O3 catalyst. Upon thermal decomposition in air, the [(Cu0.5Zn0.17Al0.333)(OH)2(CO3)0.17]⋅mH2O precursor is transferred into a carbonate-modified, amorphous mixed oxide. The calcined catalyst can be described as well-dispersed “CuO” within ZnAl2O4 still containing stabilizing carbonate with a strong interaction of Cu2+ ions with the Zn–Al matrix. The reduction of this material was carefully analyzed by complementary temperature-programmed reduction (TPR) and near-edge X-ray absorption fine structure (NEXAFS) measurements. The results fully describe the reduction mechanism with a kinetic model that can be used to predict the oxidation state of Cu at given reduction conditions. The reaction proceeds in two steps through a kinetically stabilized CuI intermediate. With reduction, a nanostructured catalyst evolves with metallic Cu particles dispersed in a ZnAl2O4 spinel-like matrix. Due to the strong interaction of Cu and the oxide matrix, the small Cu particles (7 nm) of this catalyst are partially embedded leading to lower absolute activity in comparison with a catalyst comprised of less-embedded particles. Interestingly, the exposed Cu surface area exhibits a superior intrinsic activity, which is related to a positive effect of the interface contact of Cu and its surroundings.