de.mpg.escidoc.pubman.appbase.FacesBean
Deutsch
 
Hilfe Wegweiser Impressum Kontakt Einloggen
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT

Freigegeben

Zeitschriftenartikel

Pulse shape discrimination for GERDA Phase I data

MPG-Autoren
http://pubman.mpdl.mpg.de/cone/persons/resource/persons30560

Hampel,  Wolfgang
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons30580

Heisel,  Mark
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons30592

Heusser,  Gerd
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons30605

Hofmann,  Werner
Division Prof. Dr. Werner Hofmann, MPI for Nuclear Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons30690

Knöpfle,  Karl-Tasso
Division Prof. Dr. Werner Hofmann, MPI for Nuclear Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons30768

Lindner,  Manfred
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons37601

Lubashevskiy,  Alexey
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons30794

Maneschg,  Werner
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons31012

Schreiner,  J.
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons31005

Schönert,  Stefan
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons31050

Simgen,  Hardy
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons31086

Strecker,  Herbert
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

http://pubman.mpdl.mpg.de/cone/persons/resource/persons37619

Wegmann,  Anne
Division Prof. Dr. Manfred Lindner, MPI for Nuclear Physics, Max Planck Society;

Volltexte (frei zugänglich)

1307.2610.pdf
(Preprint), 2MB

Ergänzendes Material (frei zugänglich)
Es sind keine frei zugänglichen Ergänzenden Materialien verfügbar
Zitation

Agostini, M., Allardt, M., Andreotti, E., Bakalyarov, A. M., Balata, M., Barabanov, I., et al. (2013). Pulse shape discrimination for GERDA Phase I data. The European Physical Journal C - Particles and Fields, 73(11): 2583. doi:10.1140/epjc/s10052-013-2583-7.


Zitierlink: http://hdl.handle.net/11858/00-001M-0000-0014-A0A1-E
Zusammenfassung
The GERDA experiment located at the LNGS searches for neutrinoless double beta (0\nu\beta\beta) decay of ^{76}Ge using germanium diodes as source and detector. In Phase I of the experiment eight semi-coaxial and five BEGe type detectors have been deployed. The latter type is used in this field of research for the first time. All detectors are made from material with enriched ^{76}Ge fraction. The experimental sensitivity can be improved by analyzing the pulse shape of the detector signals with the aim to reject background events. This paper documents the algorithms developed before the data of Phase I were unblinded. The double escape peak (DEP) and Compton edge events of 2.615 MeV \gamma\ rays from ^{208}Tl decays as well as 2\nu\beta\beta\ decays of ^{76}Ge are used as proxies for 0\nu\beta\beta\ decay. For BEGe detectors the chosen selection is based on a single pulse shape parameter. It accepts 0.92$\pm$0.02 of signal-like events while about 80% of the background events at Q_{\beta\beta}=2039 keV are rejected. For semi-coaxial detectors three analyses are developed. The one based on an artificial neural network is used for the search of 0\nu\beta\beta\ decay. It retains 90% of DEP events and rejects about half of the events around Q_{\beta\beta}. The 2\nu\beta\beta\ events have an efficiency of 0.85\pm0.02 and the one for 0\nu\beta\beta\ decays is estimated to be 0.90^{+0.05}_{-0.09}. A second analysis uses a likelihood approach trained on Compton edge events. The third approach uses two pulse shape parameters. The latter two methods confirm the classification of the neural network since about 90% of the data events rejected by the neural network are also removed by both of them. In general, the selection efficiency extracted from DEP events agrees well with those determined from Compton edge events or from 2\nu\beta\beta\ decays.